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Introduction

Nonlinear optics is a topic of intensive experimental re-
search[1-4]. Recently, theoretical interest has increased rap-
idly in the investigation of nonlinear optical properties of
molecules [5-10], polymers[11-13] and molecules of infinite
chains [14,15]. The principal aims of the theoretical work in
this field are not only to permit the developments required
for electrooptical and all-optical signal processing, but also
to predict and design new chemical compounds or polymers
with better nonlinear optical properties.

In the case of molecules, a variety of methods has been
developed to treat the interaction both with static as well as
frequency dependent electric fields at different levels. The
most commonly applied theories are based on the finite field
approach using the uncoupled or coupled Hartree-Fock equa-
tions [16], and recently also the density functional meth-

ods[17]. In addition, perturbation theoretical methods, e.g.
the sum over states approximation [18] have been derived.
At present the theoretical developments in this topic go
strongly into the direction to take electron correlation effects
into account [7,19-21] with the help of Møller-Plesset per-
turbation theory. As it is well known correlation effects play
a very important role to calculate reliable nonlinear optical
properties for molecules. Until now the numerical treatment
is restricted to small molecules, since another condition is
the application of very large basis sets, especially when one
is interested in hyperpolarizabilities.

The theoretical situation is much less advanced for poly-
mers. In principle two approaches are possible to calculate
the optical response properties per elementary cell, whereby
the longitudinal polarization is more interesting than the
polarizability perpendicular to the polymer chain. On one
hand, clusters of increasing size can be investigated and the
average values per unit can then be extrapolated to the infi-
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nite periodic system [14,15]. On the other hand, one can use
quantum chemical methods for polymers implementing the
uncoupled Hartree-Fock [22] and coupled Hartree-Fock [23]
formalisms to compute polarizabilities per elementary cell
of the periodic quasi-one-dimensional system.  In these pa-

pers, however, the non-bounded nature of the − eE r
r r

 opterator

was not circumvented (see below). Numerous applications
mainly on conjugated electron systems following the first
line are reported by the group of Andr\’e. In addition thor-
ough investigations on model polymeric systems have been
performed to determine the effect of chain conjugation, ba-
sis sets and electron correlation [2].

If one starts with ab initio Hartree-Fock band structure
calculations [24], it is necessary to treat the above mentioned
difficulty  of the unbounded operator of the field which de-
stroys the periodic symmetry of the polymer [25-27]. This is
also true for the case of the interaction of a polymer with an
electromagnetic field (laser light)[28]. The coupled Hartree-
Fock equations have been derived for periodic systems to
compute dynamic polarizabilities and hyperpolarizabilities,
taking also into account correlation effects [11,12].

The fundamental problem to study a polymer in the pres-
ence of an electric external field, is that the periodicity of the
polymer will be destroyed no matter how weak the field
amplitude is [29], because the operator representing the po-
tential of the electric field acting on the polymer is unbounded.
Therefore, the Born-von Kármán cyclic boundary conditions
cannot be applied and the field-dependent crystal orbitals
and energy band structure cannot be determined. As a conse-
quence, the uncoupled or coupled Hartree-Fock and finite
field techniques cannot be applied straightforwardly to ob-
tain the polarizabilities of infinite periodic systems. The al-
ternative way is to treat the nonlinear optical properties of
conjugated polymers with the help of a perturbation theo-
retical ansatz [16,30]. But its applications to systems with
large elementary cells are formidable due to the very great
computational requirements [31] and in the case of strong
fields, the application of perturbation theory becomes ques-
tionable.

In order to obtain the asympotic polarizabilities of infi-
nite periodic systems, an approach has been proposed for the
interaction with a homogeneous static electric field
[26,27,32,33] where the unbounded external electric field
potential operator has been split into two different parts. One
part describes the polarization effect without destroying the
periodicity of the polymer; the other part stands for the so-
called polarization current and is responsible for the accel-
eration of the electrons (changing the momentum of the elec-
trons ). To calculate polarizabilities only the periodic part of
the operator has to be taken into account. It has been applied
to evaluate the static polarizabilities of model systems like
infinite chains of hydrogen, water and lithium hydride mol-
ecules [26], and conjugated periodic systems with small unit
cells, e.g. polyacetylene, polycyclopropene [27]. The results
have shown that this method is superior to the cluster ap-

proach because even for such simple systems in the latter
case the convergence of the extrapolation is very slow.

In this work, the previously proposed theoretical approach
at the ab initio Hartree-Fock level [11] will be applied to
compute the polarizabilities of polymers in the presence of a
homogeneous frequency-dependent external electric field.
Taking into account only the periodic part of the electric field
potential operator, one can investigate the perturbed poly-
mer, taking advantage of the translational periodicity of the
systems. In the next section, the basic theory will be given
with particular attention to the evaluation of the frequency-
dependent polarizabilities.

Theory

The Coupled Hartree-Fock Equations

For the most general case we assume that we have a homo-

geneous electric field 
r
E  , which contains two parts, static

and dynamic,

( )r r r r r
E E E e e E E m tst

im t im t

m

M

st
m

M

= + + = +−

= =
∑ ∑ω

ω ω
ω ω

1 1

2cos

(1)

where 
r
Est  is the static electric field and 

r
Eω  is amplitude of

the time-dependent electric field oscillating with frequency
ω. Here we have taken into account also the overtones.

In this case, the total Hamiltonian of an n-electron sys-
tem can be written as

$ $ $H H H= + ′0 (2)

where $H0  is the unperturbed Hamiltonian of the n-electron

system, and $ ′H  is the perturbation operator in the presence

of the external electric field, which can be explicitly written
as

$ cos′ = − ⋅ = − +








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=
∑H eE r e E E m t rst
m

Mr r r r r
ω ω

1
(3)

Because 
r r
E r⋅  is unbounded and this destroys the transla-

tional symmetry of a periodic system, we have to treat first

of all the problem of the unbounded operator 
r r
E r⋅ .

It is easy to verify that for the gradient of the Bloch func-

tion ( )ϕn k r
r r
,
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After multiplying both sides of Eq(5) by − ieE
r

 and reor-

dering the terms, one obtains the operator

( )
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(6)

If we multiply Eq(6) from the left by a Bloch function
belonging to band m with a value k', we find for the matrix
elements of the first term of Eq(6) on the right-hand side,

( ) ( )
( ) ( ) ( )
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(7)

vanishes unless 
r r
′ =k k . This term describes the polarization

of the system in the presence of 
r
E . But it can be easily rec-

ognized that this part of the perturbation operator is
nonhermitian. The second matrix element originating from
the r.h.s. of Eq(6) is not lattice periodic. This term corre-
sponds, however, to a polarization current because matrix

elements with 
r r
′ =k k  do not vanish.

In the present study, we focus on the case of a monochro-
matic optical field without overtones that is M = 1 in the sum-
mation of Eq(1) and Eq(3), and have taken into account only

the dynamic part of the external electric field (
r r
Est = 0 ). The

perturbation operator $ ′H  will be then

$ cos′ = − ∇⋅ − ⋅H ieE e e tik r
k

ik r
r r r

r

r r

ω ω (8)

One can substitute Eq(2) with (8) into Frenkel’s variational
principle which provides the condition for the existence of a
stationary state

J
H i

J
t

=
−

=
Φ Φ

Φ Φ

$

;

∂
∂

δ 0 (9)

We apply for the time-dependent n-electron function the
ansatz:
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where W0 is the total energy of the n-electron system in the

field-free case ( the eigenvalue of $H0 ). $A  is the

antisymmetrizer and the one-electron orbitals in the pres-
ence of the field are:
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here ( )ϕ i ir
r

 is the eigenfunctions of Fock operator belong-

ing to $H0 .

To determine the effect of the time-dependent field
r
E tω ωcos  one has to substitute Eq(10) with (11) into (9),

and to perform the variation of J with respect to the unknown
functions ∆ϕ i

+ and ∆ϕ i
– , respectively, under the orthogonality

requirements [16]

( ) ( )ϕ ωi i i ir r E
r r r
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(12)
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One obtains the coupled Hartree-Fock (RPA) equations
for a closed shell system.
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( )i n= 1 2, , ,K

here $h ieE e eik r
k

ik r= − ∇⋅ − ⋅r r r

r

r r

ω
1 1  and $P1 2↔  is the permutation

operator exchanging the coordinates of electron 1 with elec-
tron 2. Further in the case of a quasi-one-dimensional peri-
odic polymer, the Fock operator of the unperturbed system is
defined as

( ) ( )$
$

$F r
P

r
r Hj j
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where (2N + 1) is the number of the unit cells in the poly-
mer, Nα the number of nuclei in the unit cell, Zα the charge

of the α – th nucleus and, finally, 
r
Rl

α  is the position vector

of the α – th nucleus in the l – th cell.

Formalism for periodic quasi-one-dimensional polymers in
the LCAO approximation

For 1D periodic polymers, the one-electron crystal orbitals

( )ϕ i
k r
r

 are expanded in a linear combination of atomic orbit-

als (LCAO)
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where N stands for the number of neighboring cells whose
interactions with the reference cell are taken explicitly into

account. ( )χ p
l r
r

 is a shorthand notation for the atomic orbital

( )χ p l pr r r
r r r− −  located in cell l at position 

r
rp , and ~m is the

number of atomic orbitals in the elementary cell.
Substituting the LCAO ansatz of ϕi and ∆ϕ i

± into the cou-
pled Hartree-Fock equations (Eq(13)), multiplying from the

left with ( )χq r0 r
  and integrating over space coordinates, one

obtains the following equations
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Here
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Dqp
0l is the matrix element of the dipole moment

D rqp
l

q p
l0 0= χ χr

and Sqp
0,l is the overlap matrix element

Sqp
l

q p
l0 0= χ χ

The above equations are linear algebraic equations in

matrix form AX B=  [11].

Because of the nonhermicity of the operator $h  (see Eq(7)

and Eq(13)), we have to expand the crystal orbitals to the
whole first Brillouin zone and to treat all matrices in the
nonhermitian way.

Inspecting the system of equation (16) one should ob-
serve that because of the occurrence of the unknown Cip

±k in
the r.h.s of Eq(16), these equations are non-linear and, there-
fore, have to be solved in an iterative way. But if we solve
Eq(16) without taking into account the electron-electron in-
teraction terms (Aqp

k,± in Eq(16)), we reach the uncoupled
Hartree-Fock equations.

After we solve the ab initio Hartree-Fock crystal orbital
problem for the unperturbed periodic polymer. We use the
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sets of the one-electron eigenvalues (εi
0,k) and the eigenvector

coefficients {Cip
0,k}, as the initial values of ( ){ }C Eip

k± r

ω  for

the first iteration of Eq(16).
After having solved the Eq(16) for all bands and all k

values, the new one-electron wave functions (Eq(11)) should
be renormalized with a normalization constant:
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Treatment of the phase factor and band crossing problems

From Eq(16) we know that we need the derivatives of the
eigenvector coefficients {Cip

k} with respect to k. This can be
done by expanding the real part of the eigenvector coeffi-
cients as a series of cosine functions and the imaginary part
as a series of sine functions, respectively.

( )C a a k a kip
k real = + + +0 1 2 2cos cos K

(19)

( )C b b k b kip
k imag = + + +0 1 2 2sin sin K

Once one obtains the expansions for Cip
k , it is easy to

calculate the value of the derivatives with respect to k for a
given value of k for each band.

In the case of band crossings and inconsistence of phase
factors difficulties arise when we expand the eigenvector
coefficients. Till now there is no general way to decide with-
out doubt whether the energy bands are crossing each other
or not. In order to reorder the bands, we apply the method
one of us developed previously (see Ref. 26).

The sequence of the energy bands at ki = 0 (i = 1) is  taken

as the reference state. Then the overlap integrals Smn
k ki i +1  are

calculated,

( ) ( )ϕ ϕm
k

n
ki ir r dr

r r r
+∫ 1 (20)

between all Bloch functions at k = ki  and k = ki+1. The cor-
responding bands are detected by the maximal value of the
overlap integral, which is in the order 0.9, while the value is
much smaller in those cases where the bands do not match.
If it is necessary, the bands can now be easily reordered for
the case where k = ki+1. Then the sequence of the crystal or-
bitals at k = ki+1 is used as the reference order, the overlap

integrals Sk ki i+ +1 2  are computed, and the comparison is per-

formed. The repetition of this procedure finally leads to a
completely ordered energy band structure. Furthermore, us-
ing the already calculated overlap matrix over atomic orbit-
als, the computation time is negligible, and the method is
reliable even in the case of only a few k values in the Brillouin
zone.

Here it should be mentioned that without reordering of
the crossing  bands, there is no way to calculate the deriva-
tives of Cip

k.
The phase factors come from the one-electron Bloch func-

tions obtained from the Hartree-Fock crystal orbital calcula-
tions with an undetermined arbitrary phase factor eiλ. The
most frequent cases in different systems are phase factors
with λ = 0,π or π/2, which means that for a given band the
sign of the coefficients for two successive k values in our
grid in k may be unchanged (the magnitude of the individual
coefficients changes smoothly), i.e. λ = 0 case, or differ by a
factor of –1 (λ = π case) or exchange the values of real and
imaginary parts of the coefficients (λ = π/2 case). These prob-
lems can be solved by inspecting the signs and the magnitudes
of the coefficients. One way is to select the largest coeffi-
cient of each eigenvector coefficient at k = 0 point and as-
sign its sign to all the coefficients belonging to other k val-
ues by multiplying with +1 or –1, respectively, when their
sign is the same or the opposite one. The other way is to
minimize the imaginary part of the coefficients at the points
k = ki (i = 2,3,..) (at the point k = k1 = 0 the imaginary part is
zero). This can be achieved by determining the angle be-
tween the real axis and the complex vector and to perform
afterwards the corresponding rotation. The angle for a given
crystal orbital i is obtained from the relation

( ) ( )
tanα =

⋅

−

∑
∑ ∑

2

2 2

C C

C C

ip
R

ip
l

p

ip
l

p ip
R
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(21)

where Cip
R and Cip

I are the real respective imaginary part of
the coefficient Cip. This procedure can be sucessfully used to
solve the case if the phase factor λ = π/2. It should be men-
tioned that we use the combination of these two methods.
For some complicated systems numerical difficulties still may
exist for the eigenvector coefficients where one can observe
a change of the phase factor within the first Brillouin zone.

Determination of SCF frequency-dependent polarizabilities

The most familiar definition[34] of polarizabilities is to ex-

pand the dipole moment in the presence of an external field 
r
E
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where λ, µ, ν,… represent x, y or z, µ0 is the dipole moment

in the absence of the field, α  is the linear polarizability, β

is the first hyperpolarizability, and γ  is the second

hyperpolarizability tensor, respectively..

In case the external field 
r
E  is time-dependent with fre-

quency ω

r
E E t= ω ωcos (23)

the induced dipole moment can be expanded as
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After we solve the coupled Hartree-Fock equations
(Eq(16)), we can expand the dipole moment as shown in
Eq.(25) using the wave functions defined in Eq(11).

If we take the first derivatives of µλ with respective to

Eω,µ at the point 
r r
Eω = 0 , and compare the coefficients of

the constant term and of cosωt term, respectively, we find
that
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We choose 6 different electric fields strengths ranging
from -0.002 to 0.002 a.u. in x, y, z directions and perform the
numerical differentiation of Eq(26) to obtain αλµ(–ω;ω).

Results and Discussion

The newly developed program for the calculation of dynamic
polarizabilties has been added to our polymer program [35]
(requests for the source code should be addressed to the au-
thors). The calculations have been performed on a CRAY/
Y-MP. Except for the calculation of the energy band struc-
ture the new programs are under development and not fully
optimized with respect to vectorization. Furthermore, extrapo-
lation procedures had not been activated for the presented
calculations, therefore we think it will not be very informa-
tive to give more technical details. Optimization of the pro-
gram is in work.

Molecular Hydrogen Chain

The frequency-dependent polarizability of the hydrogen chain
has been evaluated at the coupled Hartree-Fock level. For
the reason of comparison the uncoupled results are presented
as well. For the geometry of the hydrogen chain the intramo-
lecular distance at 2.0 a.u. and the intermolecular distance
5.0 a.u. respectively, has been taken. The results obtained for
the hydrogen chain using Clementi’s minimal basis set (MB)
and double-zeta basis set (DZ) are presented in Figure 1. In
the present work, we take 21 k points in the half first Brillouin
zone for the numerical integration to calculate the charge-
bond order matrices and to fit the unperturbed eigenvector
coefficients in a power series of cosine and sine functions for
their real and imaginary parts respectively.

From Figure 1, we find that the coupled Hartree-Fock
polarizability of the hydrogen chain for MB and DZ are all
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Figure 1. (a) coupled and (b) uncoupled frequency-dispersion
curves of the longitudinal polarizability of the hydrogen chain
for MB and DZ basis sets.
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Table  2. Components of the polarizability (a.u.) of the water
chain [a].

Frequency αxx αyy αzz α

MB

 0.0652 5.6866 0.4975 9.2279 5.1373

4.9194 0.3929 9.0844 4.7989

 0.0654 5.6868 0.5361 8.9520 5.0583

4.9195 0.4496 9.0943 4.8211

 0.0656 5.6870 0.4061 9.2431 5.1122

4.9196 0.3106 9.1042 4.7781

 0.0658 5.6871 0.3224 9.2507 5.0867

4.9197 0.2391 9.1142 4.7577

 0.0660 5.6873 0.2889 9.2584 5.0782

4.9198 0.2167 9.1242 4.7536

DZ

 0.0652 13.4398 8.7717 42.2004 21.4706

12.7222 7.7868 37.6132 19.3740

 0.0654 13.4404 8.7297 42.2076 21.4592

12.7226 7.6465 37.6220 19.3303

 0.0656 13.4409 8.7332 42.2147 21.4629

12.7230 7.6769 37.6308 19.3436

 0.0658 13.4415 8.7781 42.2219 21.4805

12.7233 7.8203 37.6397 19.3944

 0.0660 13.4420 8.8390 42.2291 21.5034

12.7237 7.9105 37.6486 19.4276

DZ+P

 0.0652 13.3734 9.2996 42.4149 21.6960

13.3200 9.0657 38.8739 20.4199

 0.0654 13.3739 9.4090 42.4241 21.7357

13.3203 9.1190 38.8851 20.4415

 0.0656 13.3744 9.5014 42.4332 21.7697

13.3207 9.1475 38.8963 20.4548

 0.0658 13.3749 9.5764 42.4425 21.7979

13.3211 9.1642 38.9075 20.4643

 0.0660 13.3754 9.6360 42.4518 21.8211

13.3214 9.1748 38.9189 20.4717

[a] α  = (αxx + αyy + αzz)/3, geometry see Figure 2.
H O

H

H O

H104.5°

0.96 Å 1.76 Å

Figure 2. Geometry of the water chain.

larger than the uncoupled ones. This is due to the inclusion
of the electron-electron interactions in the coupled Hartree-
Fock scheme. The positions of the first excitation energies
resulting from the uncoupled Hartree-Fock calculations are
all shifted to larger values in the coupled case. The numeri-
cal results and the dispersion of the longitudinal polarizability
per unit cell of the hydrogen chain is in very good agreement
with the results reported in Ref. 13.

For the reason of comparison with the polarizability of a
hydrogen molecule, in Table 1 we summarize the results of
Ref. 10 and the present work with the same geometry as in
Ref. 10 and taking the translational vector infinite (107 a.u.).
From Table 1, we see that the basis sets play an important
role in the calculations of polarizabilities. Only with very
large basis sets, can the numbers be compared with the ex-

Table 1. Components of the polarizability (a.u.) of hydrogen
molecule for different basis sets at the frequency ω = 0.0656
a.u.

Basis Sets αxx = αyy αzz α  [a] ∆α [b]

MB 0.0 5.155 1.718 5.155

DZ 0.0 6.073 2.024 6.073

DZ+P 0.699 6.074 2.491 4.740

3s2p [c] 4.420 6.661 5.150 2.191

3s2p [d] 4.3940 6.5481 5.112 2.154

Exp. 5.43 [e] 2.035 [f]

[a] α  = (αxx + αyy + αzz)/3
[b] ∆α = 1/√2 [(αxx – αyy)2 + (αxx – αzz)2 + (αyy – αzz)2]½

[c] Basis set taken from: Sadlej, A. J. Coll. Czech. Chem.
Commun. 1988, 53, 1995; Sadley, A. Theoret. Chim. Acta.
1991, 79, 123.

[d]Results with the same basis set as 3s2p [c] from Sekino
and Bartlett, see Table 4 of Ref. 9.

[e] Newell, A. C. and Baird, R. C. J. Appl. Phys. 1965, 36,
3751.

[f] MacAdam, K. B. and Ramsay, N. F. Phys. Rev. 1972, A6,
898.
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in Ref. 10 and the same basis set level [5s3p2d/3s2p] and
perform the limiting procedure from polymer to molecule as
we did for hydrogen molecule. Our results are encouraging
when we compare with the results in Table XI in Ref. 10. All
the components (αxx: 6.254, αyy: 7.864, αzz: 7.297) are in
good agreement with the results of Ref. 10 (αxx: 7.8428, αyy:
9.1647, αzz: 8.4993).

Polyacetylene(PA), polycarbonitrile(PC) and polyaziridine
(PZ)

In Table 3, we report the frequency-dependent polarizabilities
of poly(–CH=CH-)(PA), poly(–CH=N)(PC) and poly-

(
NH

)(PZ) evaluated at the coupled Hartree-Fock level at

the frequency ω = 0.0656 a.u. using Clementi’s DZ basis set.
Comparing with the results listed in Table 2 and Table 3, we
can see that the polarizability for these conjugated π-elec-
tron systems are larger than those of water and hydrogen
model chains. One can compare the frequency-dependent
longitudinal polarizability of PA αzz = 266.2 a.u.(DZ basis
set) to the static longitudinal polarizability αzz = 150.1 a.u.
(3-21G) reported in Ref. 18. This shows that the dispersion is
reasonable at this basis set level. However, it has to be men-
tioned that the calculations were not performed on the high-
est level with respect to  the basis set and that the polariza-
bilities should not be compared with the experimental val-
ues.

Conclusions and Perspectives

Ab initio frequency-dependent polarizabilities of quasi-one-
dimensional systems have been calculated at the time-de-
pendent coupled Hartree-Fock level by using the random
phase approximation (RPA). The basis set dependence and
the frequency dispersion were discussed and the results were
compared with results avaible in the literatures. The conclu-
sions can be drawn that the new approach leads to reliable

Table 3. Components of the polar izability (a.u.) of
polyacetylene (PA), polycarbonitrile (PC) and polyaziridine
(PZ) using Clementi’s DZ basis set at the frequency
ω = 0.0656 a.u. [a].

αxx αyy αzz α

 PA 43.2882 43.1108 266.2179 117.5390

 PC 12.1473 15.6583 210.9440 79.5832

 PZ 34.0674 47.4683 431.3693 170.9683

[a] α  = (αxx + αyy + αzz)/3.

perimental ones. The similar results of Ref. 10 and of this
work which we obtained using a larger basis set and per-
forming the limiting procedure from polymer to molecule,
proves the reliablity of this approach. This stimulates us to
apply larger basis sets (include polarization functions).

Water Chain

The model geomtry we take in the calculations of the water
chain is shown in Figure 2. The translational vector is 2.72
Å, in this hydrogen-bonded system.

In Figure 3, we show the time-dependent coupled and
uncoupled Hartree-Fock calculations of the frequency-de-
pendent polarizability for Clementi’s MB, DZ and double-
zeta with polarization functions (DZ+P)(p function on hy-
drogen has exponent 1.0; d function on oxygen has exponent
1.154). In Table 2, we summarize the results of the individual
components of the frequency-dependent polarizability for
Clementi’s MB, DZ and DZ+P at the frequencies ranging
from 0.0652 a.u. to 0.0660 a.u.

It is known that the basis set for the  polarizability calcu-
lations should be adequate. The prediction of the
polarizabilities depends upon products of matrix elements of
the electron position operator rr . Consequently, in the study
of polarizabilities one should take basis sets with an adequate
description of the more diffuse regions of the crystal orbit-
als. From Figure 3 one can find that the basis set dependence
is evident. Clementi’s DZ and DZ+P basis sets yield more
reliable values than the MB basis set. The polarizability for
MB are always lower than the results for DZ and DZ+P, but
the results for DZ and DZ+P are very similar. Therefore, in
the following discussion, we only present the results of DZ
or DZ+P basis sets.

From Table 2, and Figure 3 as well, we find that by intro-
ducing the polarization functions into the DZ basis set, the
polarizability increases only to a small extent. For example,

at the frequency 0.0656 a.u., α  for DZ is 21.4629 a.u., while
for DZ+P is 21.7697 a.u. The difference is about 0.3 a.u.

In Figure 3 and Table 2, we also report the uncoupled
results. Due to the inclusion of the electron-electron interac-
tions in the coupled Hartree-Fock calculations, the coupled
results are larger than the uncoupled ones. In Table 2, the
first line of each frequency is the coupled Hartree-Fock re-
sults and the second line gives the uncoupled Hartree-Fock
ones. The coupled results are always 5 to 10 percent larger
than the uncoupled ones.

The geometry of the water chain we have chosen is the
hydrogen-bonded structure. The hydrogen bond is along the
polymer direction( Figure 2). It is not surprising that along
the polymer axis (taken as the z-axis), the polarizability should
be larger than that in the other directions. In  Table 2, the αzz

component with different basis sets are much larger than the
other components αxx and αyy, as it is to be expected.

To compare our results with the polarizability of a water
molecule reported in Ref. 10, we take the same geometry as
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results and is superior to the cluster method because in the
latter case even for simple systems the convergence of the
extrapolation is very slow.

 However, to obtain the solutions of Eq(16), one has to
inspect very carefully the phase factors and band crossings.
This will be much more complicated for larger unit cells or
larger basis sets. Moreover, to obtain the frequency-disper-
sion curves, one needs to solve Eq(16) for each frequency of
interest. The more one reaches the excitation energy, the more
difficult it is to obtain convergence. In addition, to obtain the
hyperpolarizabilities, one needs to expand the one-electron
orbital ansatz [11] to higher orders, and therefore the cou-
pled Hartree-Fock equations will become more complicated.
The development of the program of the evaluation of
hyperpolarizabilities based on this extension is in progress
in our Group.
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