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Abstract

Calculations of frequency-dependent polarizabilities of quasi-one-dimensional systems are reported using the
coupled Hartree-Fock method recently developed for polymers. Computations have been performed for infinite
model chains of hydrogen and water molecules, respectively. The frequency dispersions applying different basis
sets agree very well with theoretical results in the literature both for the chain and the respective molecule. In
addition the dynamic polarizabilities of the conjugated periodic systems polyacetylene, polycarbonitrile and
polyaziridine have been investigated.
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0ds[17]. In addition, perturbation theoretical methods, e.g.
Introduction the sum over states approximation [18] have been derived.

At present the theoretical developments in this topic go
Nonlinear optics is a topic of intensive experimental re-strongly into the direction to take electron correlation effects
search[1-4]. Recently, theoretical interest has increased rapto account [7,19-21] with the help of Mgller-Plesset per-
idly in the investigation of nonlinear optical properties of turbation theory. As it is well known correlation effects play
molecules [5-10], polymers[11-13] and molecules of infinitea very important role to calculate reliable nonlinear optical
chains [14,15]. The principal aims of the theoretical work inproperties for molecules. Until now the numerical treatment
this field are not only to permit the deepments equired  is restricted to small molecules, since another condition is
for electrooptical and all-optical signal processing, but alsghe application of very large basis sets, especially when one
to predict and design new chemical compounds or polymeris interested in hyperpolarizabilities.
with better nonlinear optical properties. The theoretical situation is much less advanced for poly-

In the case of molecules, a variety of methods has beemers. In principle two approhes are possible to calculate

developed to treat the interaction both with static as well aghe optical response properties per elementary cell, whereby
frequency dependent electric fields at differenelevThe  the longitudinal polarization is more intenest than the
most commonly applied theories are based on the finite fielgholarizability perpendicular to the polymer chain. On one
approach using the uncoupled or coupled Hartree-Fock equiand, clusters of increasing size can be investigated and the
tions [16], and recently also the density functional meth-average values per unit can then be exied to the infi-
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nite periodic system [14,15]. On the other hand, one can usgroach because even for such simple systems in the latter
guantum chemical methods for polymers implementing thecase the convergence of the egbiation is very slow.
uncoupled Hartree-Fock [22] and coupled Hartree-Fock [23]  In this work, the previously proposed thetical approach
formalisms to compute polarizabilities per elementary cellat the abinitio Hartree-Fock level [11] will be applied to

of the periodic quasi-one-dimensional system. In these pacompute the polarizabilities of polymers in the presence of a
pers, however, the non-bounded nature oftbE ¥ opterator homog_eneous frequency-mmwde_nt _teternal electric f'e.ld'.

i ~_Taking into account only the periodic part of the electric field
was not cwcumvented (see below). Numer_ous applfcat'onﬁotentialoperator,one can investigatee pearbed poly-
mainly on conjugated electron systenwidwing the first ey taking advantage of the translational periodicity of the
line are reported by the gup of Andr\'e. In adiition thor-  gystems. In the next sectidhe basic theory will be given

ough inestigations on model polymeric systems have beeyity particular #ention to the evaluation of theefjuency-
performed to detenine the eféct of dain conjugation, ba- dependent polarizabilities.

sis sets and electron correlation [2].

If one starts with ab initio Hartree-Fock band structure
calculations [24], it is necessary to treat the above mentioneﬁ;lh eory
difficulty of the unbounde@perator of the field which de-

stroys the periodic symmetry of the polymer [25-27]. Thls IS1he Coupled Hartree-Fock Equations
also true for the case of the interaction of a polymer with an

electromagnetic field (laser light)[28]. The coupled Hartree-
Fock equations have been derived for periodic systems tgor the most g(Iene_raIacase V\_’e assumg that we heomar )
compute dynamic polarizabilities and hyperpolarizébgit ~ 9eneous electric fieldE , which contains two parts, static
taking also into account correlation effects [11,12]. and dynamic,

The fundamental problem to study a polymer in the pres-
ence of an electric external field, is that the periodicity of the M M
polymer will be destroyed no matter how weak the field g - Est + Ew(émwt + e—irmot) - E{ +S E2cos m t
amplitude is [29], because the operator representing the po- n; r;
tential ofthe electric field acting on the polymer is unbounded.
Therefore, the Born-von Karman cyclic boundary conditions
cannot be pplied and the field-deendent grstal orbitals
and energy band structure cannot be determined. As a consghere Est is the static electric field anéw is amplitude of

quence, the uncoupled or coupled Hartree-Fanuk finite  the time-dependent electrielfl oscillating with frequency
field techniques cannot b@lied straightforwardly to ob- ;, Here we have taken into account also the overtones.

tain the polarizabilities of infinite periodic systems. The al- | this case, the total Hamiltonian of an n-electron sys-
ternative way is to treat the nonlinear optical properties otem can be written as

conjugated polymerwith the help of a perturban theo-

retical ansatz [16,30]. But its applications to systems with | R

large elementary cells are formidable due to the very great! = Ho + H’ (2)

computational requirements [31] and in the case of strong

fields, the application of perturtian theory becomes ques-

tionable. A
In order to obtain the asympotic polab#ies of infi- system, andH' is the perturbation operator in the presence

nite periodic systems, an approach has been proposed for tia¢ the external electric field, which can be explicitly written

interaction with a homogeneous ttaelectric field gg

[26,27,32,33] where the unbounderternal electric field

potential operator has been split into two different parts. One

part describes the polartazn effect without destroying the . - U U

periodicity of the polymer; the other part stands for the so-T = €ELF = —e@ ¢+ ) Rycosmo ﬁﬂr (3)

called polarization current and is responsible for the accel- m=

eration of the electrons (changing the momentum of the elec-

trons ). To calculate polarizabilities only the periodic part of BecauseE [F is unbounded and this destroys the transla-

the operator has to be taken into account. It has been appligda| symmetry of a periodic system, we have to treat first
to evaluate the dia polarizabilities of model systems like of all the problem of the unbounded operaf‘olﬁ“.

infinite chains of hydrogen, water and lithium hgér mol- _ ) )
ecules [26], and conjugated periodic systems with small unit 1S €asy to verify that for the gradient of the Bloch func-
cells, e.g. polyacetylene, polycyclopropene [27]. The resultsﬁon ) (R,?)

have shown that thimethod is supéor to the tuster ap- "

(1)

where H, is the unperturbed Hamiltonian of the n-electron
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We apply for the time-dependent n-electron function the

ansatz:
Oeba (K F)=ire, (<.r)+e*o0.U, (k)
:iF¢n(IZ,F)+eiRmDRe‘iRm¢n(R,T) ®) ¢(F1,F2,...,Fn,éw,m;)=
n
Vbt A (7, E (10)
After multiplying both sides of Eq(5) by ieE and reor- © I\%tAli:ll % (L Ew,w)t

dering the terms, one obtains the operator

whereW, is the total energy of the n-electron system in the

—eEEf¢n(R,T): field-free case ( the eigealue of H,). A is the
L E KB cikBy [ L= - (6) antisymmetrizer and the one-electron orbitals in the pres-
ieEe™ ;e ¢“( klj')+ 'eEDDI?q)”( K ) ence of the field are:
If we multiply Eq(6) from the left by a Bloch function 5, (F E t)
belonging to band m with aaluek’, we find for the matrix o 1
elements of the first term of Eq(6) on the right-hand side, ¢ (r)+a0; (rT Em)e'“ 007 (ﬁEm) it (11)

_ ie<¢ ( )‘Eeukm gk®
- ieEI d’rei(E_R'

o0 (1)

)@ Um(T('7T)D|z U, (Tﬁ—r) (™M ingto A, .
To determine the effect of the time-dependent field

E,, coswt one has to substitute Eq(10) with (11) into (9),

and to perform the variation of J with respect to the unknown
of the system in the presence Bf. But it can be easily rec- functionsA¢; andA¢; , respectively, under the orthogonality
ognized that this part of the perturbation operator isfequirements [16]

nonhemitian. Thesecond matrix element originating from

the r.h.s. of Eq(6) is not lattice periodic. This term corre-

sponds, however, to a polarization current because matri>/;¢ ( )‘Aq’l (I ' w)> =0

here ¢, ( ) is the eigenfunctions of Fock optmabelong-

vanishes unlesk’ = k. This term describes the polarization

elements withk’ = k do not vanish. (12)
In the present study, we focus on the case of a monochrg-, ,  _ 2 - il = WO

matic optical field without overtones thatis M = 1 in the sum- FA¢; (ri ’Em) ‘d’j (rj )>+ <¢j (rj )‘Aﬁh" (ri vEm)>E: 0

mation of Eq(1) and Eq(3), and have taken into account only

the dynamic part of the external electric fieE(=0). The One obtains the coupled Hartree-Fock (RPA) equations

perturbation operatoH’ will be then for a closed shell system.

H' = -ieE, €70, € cosw t (8) Bfo - ( ) 4 éAq) (rl, )> + ﬁ|¢i (F1)>
. Qne can 'substltut.e Eq(2) with (8) into Frenkelgvarlatlonal+ 'y (r2)| 2- PlH ‘Aq) = )> +h CE
principle which provides the condition for the existence of a ! 2 g

stationary state 3
| ¢ i (r1)> = (13)



J. Mol. Model.1997, 3 185

i pi cv(&,) ék'a[ R - (0 £ ) ug;;;]
Z |kIaD0I -1 ¢ %2 |aia % %D

here = -ieE, %0, 6% and B, is the permutation

operator exchanging the coordinates of electron 1 with elec— Ck
tron 2. Further in the case of a quasi-one-dimensional peri- Z
odic polymer, the Fock operator of the unperturbed system is

defined as ilalE iy d K
+||e|EmI:_sz:1%TZC,pDEé' RS
% A
. \2-P 2 .
Fo = Z<¢] (FZ)T;“ZCPI- (r2)> +HN (16)
= 2
(14) Here
2N+1Ng
ﬁ:_DlZZ R' N N mm %
2afi- A= 2, 2,22 3 el ot

where (A + 1) is the number of the unit cells in the poly- _< Oyli|yl2y! > xClikclztk [ E
mer, N, the number of nuclei in the unit cell, the charge XaXu [ XvXp % S (Ew)
. L . Fom
of thea —th nucleus and, flnally,RL is the position vector Ny an < ol ol
+ XaXii | X x2> (17)
of thea —th nucleus in thé — th cell. Z z z Z % TR ARAY

Formalism for periodic quasi-one-dimensional polymers in —<X8X|ﬁ
the LCAO appmimation

For 1D periodic polymers, the one-electron crystal orbitals- o . ; -
o . _ o _ _Squ is the matrix element of the dipole moment
b (r) are expanded in a linear combination of atomic orbit-
als (LCAO o —/y0[e|y!
( ) qu_<xq|r|xp>

ol i .

¢k (F) _ (2N +1 IklaZ Q and qu is the overlap matrix element
o _ /0]yl

(15) qu - <Xq ‘X p>

0
iR (f', )=(2N +1)° z Chs z G| B, ( ) The aboveequations are linear algebraic equations in
=N matrix form AX= B [11].

where N stands for the number of neighboring cells whose ~Because of the nonhermicity of the operéiofsee Eq(7)
interactions with the reference cell are taken explicitly intoand Eq(13)), we have to expand the crystal orbitals to the
whole first Billouin zone and to treat all matrices in the
nonhermitian way.

Inspecting the system of equation (16) one should ob-
serve that because of the occurrence of the unk
number of atomic orbitals in the elementary cell. the r.h.s of Eq(16), these equations are non-linear and, there-

Substituting the LCAO ansatz ¢f andA¢§ into the cou-  fore, have to be solved in an iterative way. But if we solve
pled Hartree-Fock equations (Eq(13)), multiplying from the Eq(16) without taking into account the electron-electron in-
left with X% (F) and integrating over space cdres, one teraction termsAy® in Eq(16)), we reach the uncoupled

Hartree-Fock equations.

After we solve the ab initio Hartree-Fock crystal orbital

problem for the unp&srbed pedic polymer. We use the

account.x ( ) is a shorthand notation for the atomic orbital

Xp (F - —Fp) located in cell at positionf, , andm is the

obtains the following equations
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sets of the one-electron elgenvaluéé‘Xand the eigenvector integrals gk+k+2 are computed, and the comparison is per-

coeficients {C94, as the initial values of{Cif]k (Ew)} for  formed. The repetition of this procedure finally leads to a
completely ordered enerdyand structure. Furthermore, us-

the first iteration of Eq(16). ing the already calculated overlap matrix over atomic orbit-
After having solvedhe Eq(16) for all bands and ak s, the compution time is ngligible, and the method is

values, the new one-electron wave functions (Eq(11)) Shou|ijellable even in the case of only a flewalues in the Brillouin
be renormalized with a normalization constant: zone.

Here it should be mentioned that without reordering of
N the cossing bands, there is no way to calculate the deriva-
g > tives of C.'S-

The phase factors come from the one-electron Bloch func-
+<A¢_i,k (F E )‘Aq)_t,k (F E )>D_}é (18)  tions obtained from the Hartree-Fock crystal orbital calcula-
PyTe VT8 tions with an undetermined arbitrary phasetdr &. The
most frequent cases in different systems are phase factors

with A = 0,itor 172, which means that for a given band the
sign of the coefficients for two successkevalues in our
grid ink may be unchanged (the magnitude of the individual
coefficients changesmoothly), i.eA = 0 case, or differ by a
Sactor of —1 A =1 case) or exchange the values of real and
imaginary parts of the coefficients € W2 case). These prob-
Tems can be solved by inspecting the signs and the magnitudes
a& the coefficients. One way is to select the datgoeffi-
cient of each eigenvector coefficientlkat 0 point and as-
sign its sign to all the coefficients belonging to other k val-
Ck(real) = a, + a, cosk+ @ co2 k-.. ues by multiplying with +1 or1, respectively, when their
(19) sign is the same or the opposite one. The other way is to
minimize the imaginary part of the coefficients at the points
k(imag) _ k=k (i =2,3,..) (at the poirk =k, = 0 the imaginary part is
Cip = by +bysink+ b, sinZ k.. zercl?). This can be achieved Ulyetermining the angle be-
tween the real axis and the complex vector and to perform
Once one obtains the expansions @; it is easy to  afterwards the corresponding rotation. The angle for a given
calculate the value of the derivatives with respect to k for arystal orbital i is obtained from the relation
given value of k for each band.
In the case of band crossings and inconsistence of phase

Treatment of the phase factor and band crossing problems
From Eq(16) we know that we need the derivatives of th
eigenvector coefficientsGf} with respect tok. Thiscan be

done by expanding the real part of the eigenvector coeffi

as a series of sine functions, respectively.

factors difficulties arise when we expand the eigenvector 22 ChC,
coeficients. Till now there is noemeral way to decide with- tana = 5 21)
out doubt whether the energy bands are crossing each other Zp(Ci'p) - Zp(q?)

or not. In order to reorder the bands, we apply the method
one of us developed previously (see Ref. 26).

The sequence of the energy bands at0 (= 1) is taken whereCR and C/ are the real respective imaginary part of
the coefFuenC This procedure can be sucessfully used to
solve the case |f the phase fackor 172. It should be men-
calculated, tioned that we use the combination of these two methods.

For some complicated systems numerical difficulties still may

K (o K (o e exist for the eigerector coefficients where one can observe

I¢ 5 (F) o (r)dr (20)  a change of the phase factor within the first Brillouin zone.

as the reference state. Then the overlap iakegk+ are

between all Bloch functions #&t= k andk =k, ,. The cor- Determination of SCF frequency-dependent polarizabilities

responding bands are detected by the maximlalevof the

overlap integral, which is in the order 0.9, while the value isThe most familiar definition[34] of polarizabilities is to ex-
much smaller in those cases where the bands do not matgpand the dipole moment in the presence of an externaHield
If it is necessary, the bands can now be easily reordered for

the case wherk =k, ;. Then the sequence of the crystal or-

bitals atk =k;,, is used as the reference order, the overlap
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A~ lwlE Aot alE o (-ww)=
-l (E'? o1 10i)+{ao e fo)]

| I 1 I 26

:HS_FZG)\HEH_i_EZB)\HVEuEV _ e £ ( )
H ThY w
(22)
A
3 ZV WPE“E" Bt We choose 6 different electric fields strengths ranging

wye from -0.002 to 0.002 a.u. in X, y, z directions and perform the

numerical differentiation of Eq(26) to obtairt(-w;w).
wherej, |, v,... represenx, y or z, |, is the dipole moment

in the absence of the fieldy is the linear polarizabilityP Results and Discussion

Is the first hyperpolarizabilityand y s the second The newly developed program for the calculation of dynamic

hyperpolarizability tensor, respectively.. polarizabilties has been added to our polymer program [35]
In case the external fiel& is time-dependent with fre- (requests for the source code should be addressed to the au-
quencyw thors). The calcutions have been performed on a CRAY/

Y-MP. Except for the calculation of the energy band struc-
ture the new programs are under development and not fully

= E, coswt (23)  optimized with respect to vectorization. Furthermore, extrapo-
lation procedures had not been activated for the presented
the induced dipole moment can be expanded as calculations, therefore we think it will not be very informa-

tive to give more technical details. Optimization of the pro-
gram is in work.

Mapd + ¥ oM (- w;w)E,, coswt
He=Ho Z ( ) OH Molecular Hydrogen Chain

+1 z prHY (0 (W, —oo) Eop oy The frequency-dependent polarizability of the hydrogen chain
4 (24) has been evaluated at the coupled Hartree-Fogl. |&or
A the reason of comparison the uncoupled results are presented
2 z B (- 200500, 0) By Eyyyy COSA0LH .. as well. For the geometry of the hydrogen chain the intramo-
v lecular distance at 2.0 a.u. and the intermolecular distance
5.0 a.u. respectively, has been taken. The results obtained for
he hydrogen chain using Clementi’'s minimal basis set (MB)
and double-zeta basis set (DZ) are presented in Figure 1. In
the present work, we take 21 k points in the half first Brillouin
zone for the numerical integration to calculate the charge-
T bond order maites and to fit the unperturbed eigenvector
E,pat the pointE =0, and compare the coefficients of coefficients in a power series of cosine and sine functions for
the constant term and of easterm, respectively, we find their real and imaginary partespectively.
that From Figure 1, we find that the coupled Hartree-Fock
polarizability of the hydrogen chain for MB and DZ are all

After we solve the coupled Hartree-Fock equatlons
(Eq(16)), we can expand the dipole moment as shown in
Eq.(25) using the wave functions defined in Eq(11).

If we take the first derivatives @f* with respective to

<¢. +AGTKE +AGTHE | ToK + ApTK €Y + g >
[t o) <A¢'+k'r'”" Yo (a7 r 07 4)] (01075 + (a0 o Jp
[ OF|T[07%) + (80| o >] _"‘x+[<A¢f‘k|f|A¢f’k>]ei2‘*‘ +[<A¢i"*k|r|A¢i—,k>]e—i2mt
= [{oK1710%) + (2017 |07 ) + (0417 07 )]+ [(0417107) + (67 I [0 ) cosa o5
[A¢. k|r|A¢+k>]C052wt
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Figure 1.(a) coupled and (b) uncoupled frequency-dispersion
curves of the longitudinal polarizability of the hydrogen chain
for MB and DZ basis sets.



J. Mol. Model.1997, 3

189

Table 1. Components of the polarizability (a.u.) of hydrogen Table 2.Components of the polarizability (a.u.) of the water

molecule for different basis sets at the frequaeney0.0656  chain [a].

a.u.
Frequency ox a¥y az o
Basis Sets o =a%¥ a# o [a] Aa [b]
MB
MB 0.0 5155  1.718  5.155 0.0652 5.6866  0.4975  9.2279  5.1373
bz 0.0 6.073 2024  6.073 4.9194  0.3929  9.0844  4.7989
DZ+P 0.699 6.074 2491  4.740 0.0654 56868  0.5361  8.9520  5.0583
3s2p [c] 4.420 6.661 5.150 2.191 4.9195 0.4496 9.0943 4.8211
3s2p [d] 4.3940  6.5481 5112 2154 (0656 5.6870  0.4061  9.2431 51122
Exp. 5.43[e] 2.035[f] 49196  0.3106  9.1042  4.7781
0.0658 5.6871 0.3224 9.2507 5.0867
[a] a = (o +a¥ +0%)/3 4.9197 0.2391 9.1142 4.7577
[b] Aa = IN2 [(*—aW)? + (@ —a?)? + @V — a?)?] % 0.0660 5.6873 0.2889 9.2584 5.0782
[C] Basis set taken fromSadIej, A. JColl. Czech. Chem. 4.9198 0.2167 9.1242 4.7536
Commun1988 53, 1995; Sadley, ATheoret. Chim. Acta.
1991 79, 123. Dz
[d]Results with the same basis set32p [c]from Sekino
and Bart|ett see Table 4 of Ref. 9. 0.0652 13.4398 8.7717 42.2004 21.4706
[e] Newell, A. C. and Baird, R. Cl. Appl. Phys1965 36, 12.7222 7.7868 37.6132 19.3740
3751. 0.0654  13.4404 87297 422076  21.4592
[f] MacAdam, K. B. and Ramsay, N.Fhys. Rev1972 A6, 12.7926 7 6465 37 6220 19.3303
898. ) ' ) '
0.0656 13.4409 8.7332  42.2147  21.4629
12.7230 7.6769  37.6308  19.3436
larger than the uncoupled ones. This is due to the inclusiorD.0658 13.4415 8.7781  42.2219  21.4805
of the electron-electron interactions in the coupled Hartree- 12.7233 7.8203 37.6397 19.3944
Fock _scheme. The positions of the first excitation energies; qeep 13.4420 8.8390 422291  21.5034
resulting from the uncoupled Hartree-Fock calculations are
all shifted to larger values in the coupled case. The numeri- 12.7237 7.9105  37.6486  19.4276
cal results and the dispersion of the longitudinal polarizability
per unit cell of the hydrogen chain is in very good agreemenDZ+P
with the results reported in Ref. 13. 00652  13.3734  9.2996  42.4149  21.6960
For the reason of comparison with the polarizability of a
hydrogen molecule, in Table 1 we summarize the results of 13.3200 9.0657 38.8739  20.4199
Ref. 10 andthe present work with the same geometry as in 0-0654 13.3739 9.4090  42.4241  21.7357
Ref. 10 and taking the translational vector infinite’(AQ.). 13.3203 9.1190 38.8851  20.4415
From Table 1, we see that the basis sets play an importarny gg56 13.3744 05014 424332 21.7697
role in the calculations of polarizabilities. Only with very 13.3207 01475 38.8963  20.4548
large basis sets, can the numbers be compared with the ex- ' ) ) )
0.06 13.3749 9.5764 42.4425 21.7979
13.3211 9.1642  38.9075  20.4643
0.0660 13.3754 9.6360 42.4518 21.8211
0.96 A 1.76 A 13.3214 9.1748  38.9189  20.4717

[a] O = (@*+ oY + a*3)/3, geometry see Figure 2.

Figure 2. Geometry of the water chain.
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perimental ones. The similar results of Ref.abd ofthis Table 3. Components of the polarizability (a.u.) of

work which we obtained using a larger basis set and perpolyacetylene (PA), polycarbonitrile (PC) and polyaziridine

forming the limiting procedure from polymer to molecule, (PZ) using Clementi’s DZ basis set at the frequency
proves the reliablity of this approach. This stimulates us tav= 0.0656 a.u. [a].

apply larger basis sets (include polarization functions).

. XX yy 7z —
Water Chain a a a a

The model geomtry we take in the calculations of the waterPA 43.2882 43.1108  266.2179 117.5390

chain is shown in Figure 2. The translational vector is 2.72pc 12.1473 15.6583 210.9440 79.5832

A, in this hydrogen-bonded system. PZ 340674  47.4683 431.3693  170.9683
In Figure 3, we show the time-dependent coupled and

uncoupled Hartree-Fock calculations of the frequency-de-

pendentpolarizability for Clementi's MB, DZ and double- [a] @ = @+ o + 0?)/3.

zeta with polarizigon functions (DZ+P)(p function on hy-

drogen has exponent 1.0; d function on oxygen has exponent

1.154). In Table 2, we summarize the results of the individual .
components of the frequency-dependent polarizability for" Ref. 10 ar_1d_t_he same basis set level [5s3p2d/3s2p] and
erform the limiting procedure from polymer to molecule as

Clementi's MB, DZ and DZ+P at theefuencies ranging perio i
from 0.0652 a.u. to 0.0660 a.u. we did for hydrogen molecule. Our results are encouraging

. . L when we compare with the results in Table XI in Ref. 10. All
It is known that th i for th larizabili lcu- .
tis known that the basis set for the polarizability calcu the componentsof* 6.254, a¥¥: 7.864, a?2 7.297) are in

lations should be adequate. The prediction of the . ) W
polarizabilities depends upon products of matrix elements o Ol%cil?%zefrsnigggth the results of Ref. 45(7.8428.a.

the electron position operatdér. Consequently, in the study

of polarizabilities one should take basis sets with an adequa‘golyacetylene(PA), polycarbonitrile(PC) and polyaziridine
description of the more diffuse regions of the crystal orbit—g:,z)
e

als. From Figure 3 one can find that the basis set dependen
IS F—:-wdent.CIemenns DZ and D.Z+P basis sets yleld.r.nore In Table 3, we report the frequency-dependent polarizabilities
reliable values than the MB basis set. The polarizability forof oly(—CH=CH-)(PA), poy(—CH=N)(PC) andpoly-
MB are always lower than the results for DZ and DZ+P, but poly ' P oty

the results for DZ and DZ+P are very similar. Therefore, in(ﬁ)(Pz) ewluated at the coupled Hartree-Fock level at

the following _d|scu33|on, we only present the results of thh;requencym: 0.0656 a.u. using Clementi’'s DZ basis set.
or DZ+P basis sets.

) . Comparing with the results listed in Table 2 and Table 3, we
From Table 2, and Figure 3 as well, we find that by intro can see that the polarizability fireseconjugaed Tr-elec-

ducing the polarization functions into the DZ basis set, th<=tron systems are larger than those of water and hydrogen

polarizability increases only to a small extent. For examplemodel chainsOne can compare the frequency-dependent
at the frequency 0.0656 a.u, for DZ is 21.4629 a.u., while longitudinal polarizability of PAaZ= 266.2 a.u.(DZ basis

for DZ+P is 21.7697 a.u. The difference is about 0.3 a.u. Set) to the static |0ngitudina| po|mh||ty o%Z= 150.1 a.u.

In Figure 3and Table 2, walso report the uncoupled (3-21G) reported in Ref. 18. This shows that the dispersion is
results. Due to the inclusion of the electron-electron interacreasonable at this basis set level. However, it has to be men-
tions inthe coupled Hartree-Fock calculations, the coupledioned that the calculations were not performed on the high-
results are larger than the uncoupled ones. In Table 2, thest |evel with respect to the basis set and that the polariza-

first line of each frequency is the coupled HeetiFock re-  pjlities should not be compared with theperimental val-
sults and the second line gives the uncoupled Hartree-Fogkes.

ones. Thecoupled results are always 5 to 10 percent larger
than the uncoupled ones.

The geometry of the water chain we have chosen is the\jusions and Perspectives
hydrogen-bonded structure. The hydrogen bond is along the

polymer direction( Figure 2). It is not surprising that along ap, jnitig frequency-dependent polarizabilities of quasi-one-
the polymer axis (ta!<en asthe z-a_X|s),.the polarizability ShouIﬁimensional systems have been calculated at the time-de-
be larger than that in the other directions. In Table 2ythe pendentcoupled Hartree-Fock level by using the random
component with different basis sets are much larger than thﬁhase approximation (RP Thebasis set dependence and
other components™* anda”, as Itis to be'expgcted. the frequency dispersion were discussed and the results were
To compare our results with the polarizability of a Watercompared with results avaible in the literatures. ddreclu-
molecule reported in Ref. 10, we take the same geometry %ons can be drawn that the new approach leads to reliable
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results and is superior to the cluster method because in tHe.

latter case even for simpkystems the convergence of the

extrapoldion is very slow. 13.

However, to obtain the solutions of Eq(16), one has to

inspect very carefully the phase factors and band crossing&4.
This will be much more complicated for larger unit cells or 15.

larger basis sets. Moreover, to obtain the frequency-disper-

sion curves, one needs to solve Eq(16) for each frequency a6.

interest. The morenereabesthe excition energy, the more

difficult it is to obtain convergence. In addition, to obtain the 17.

hyperpolarizabilities, one needs to expand the one-electron

orbital ansatz [11] to higher orders, and therefore the cout8.

pled Hartree-Fock equations will become more complicated.

The development of the program of the evaluation o0f19.
hyperpolarizabilities based on this extension is in progres20.

in our Group.
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